Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mov Ecol ; 12(1): 31, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654348

RESUMO

BACKGROUND: Acoustic telemetry has become a fundamental tool to monitor the movement of aquatic species. Advances in technology, in particular the development of batteries with lives of > 10 years, have increased our ability to track the long-term movement patterns of many species. However, logistics and financial constraints often dictate the locations and deployment duration of acoustic receivers. Consequently, there is often a compromise between optimal array design and affordability. Such constraints can hinder the ability to track marine animals over large spatial and temporal scales. Continental-scale receiver networks have increased the ability to study large-scale movements, but significant gaps in coverage often remain. METHODS: Since 2007, the Integrated Marine Observing System's Animal Tracking Facility (IMOS ATF) has maintained permanent receiver installations on the eastern Australian seaboard. In this study, we present the recent enhancement of the IMOS ATF acoustic tracking infrastructure in Queensland to collect data on large-scale movements of marine species in the northeast extent of the national array. Securing a relatively small initial investment for expanding receiver deployment and tagging activities in Queensland served as a catalyst, bringing together a diverse group of stakeholders (research institutes, universities, government departments, port corporations, industries, Indigenous ranger groups and tourism operators) to create an extensive collaborative network that could sustain the extended receiver coverage into the future. To fill gaps between existing installations and maximise the monitoring footprint, the new initiative has an atypical design, deploying many single receivers spread across 2,100 km of Queensland waters. RESULTS: The approach revealed previously unknown broad-scale movements for some species and highlights that clusters of receivers are not always required to enhance data collection. However, array designs using predominantly single receiver deployments are more vulnerable to data gaps when receivers are lost or fail, and therefore "redundancy" is a critical consideration when designing this type of array. CONCLUSION: Initial results suggest that our array enhancement, if sustained over many years, will uncover a range of previously unknown movements that will assist in addressing ecological, fisheries, and conservation questions for multiple species.

2.
J Anim Ecol ; 92(12): 2333-2347, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37843043

RESUMO

Foraging is a behavioural process and, therefore, individual behaviour and diet are theorized to covary. However, few comparisons of individual behaviour type and diet exist in the wild. We tested whether behaviour type and diet covary in a protected population of Atlantic cod, Gadus morhua. Working in a no-take marine reserve, we could collect data on natural behavioural variation and diet choice with minimal anthropogenic disturbance. We inferred behaviour using acoustic telemetry and diet from stable isotope compositions (expressed as δ13 C and δ15 N values). We further investigated whether behaviour and diet could have survival costs. We found cod with shorter diel vertical migration distances fed at higher trophic levels. Cod δ13 C and δ15 N values scaled positively with body size. Neither behaviour nor diet predicted survival, indicating phenotypic diversity is maintained without survival costs for cod in a protected ecosystem. The links between diet and diel vertical migration highlight that future work is needed to understand whether the shifts in this behaviour during environmental change (e.g. fishing or climate), could lead to trophic cascades.


Assuntos
Ecossistema , Gadus morhua , Animais , Clima , Isótopos , Comportamento Espacial
3.
Science ; 380(6650): 1155-1160, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37319199

RESUMO

A global survey of coral reefs reveals that overfishing is driving resident shark species toward extinction, causing diversity deficits in reef elasmobranch (shark and ray) assemblages. Our species-level analysis revealed global declines of 60 to 73% for five common resident reef shark species and that individual shark species were not detected at 34 to 47% of surveyed reefs. As reefs become more shark-depleted, rays begin to dominate assemblages. Shark-dominated assemblages persist in wealthy nations with strong governance and in highly protected areas, whereas poverty, weak governance, and a lack of shark management are associated with depauperate assemblages mainly composed of rays. Without action to address these diversity deficits, loss of ecological function and ecosystem services will increasingly affect human communities.


Assuntos
Conservação dos Recursos Naturais , Recifes de Corais , Extinção Biológica , Tubarões , Rajidae , Animais , Humanos , Pesqueiros , Biodiversidade
4.
Conserv Biol ; 37(1): e13917, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35435294

RESUMO

Marine protected areas (MPAs) are key tools in addressing the global decline of sharks and rays, and marine parks and shark sanctuaries of various configurations have been established to conserve shark populations. However, assessments of their efficacy are compromised by inconsistent terminology, lack of standardized approaches to assess how MPAs contribute to shark and ray conservation, and ambiguity about how to integrate movement data in assessment processes. We devised a conceptual framework to standardize key terms (e.g., protection, contribution, potential impact, risk, threat) and used the concept of portfolio risk to identify key attributes of sharks and rays (assets), the threats they face (portfolio risk), and the specific role of MPAs in risk mitigation (insurance). Movement data can be integrated into the process by informing risk exposure and mitigation through MPAs. The framework is operationalized by posing 8 key questions that prompt practitioners to consider the assessment scope, MPA type and purpose, range of existing and potential threats, species biology and ecology, and management and operational contexts. Ultimately, MPA contributions to shark and ray conservation differ according to a complex set of human and natural factors and interactions that should be carefully considered in MPA design, implementation, and evaluation.


Marcos conceptuales y preguntas clave para evaluar la contribución de las áreas marinas protegidas a la conservación de tiburones y rayas Resumen Las áreas marinas protegidas (AMP) son herramientas importantes para manejar la declinación mundial de tiburones y rayas, por lo que se han establecido parques marinos y santuarios de diversas configuraciones para conservar las poblaciones de tiburones. Sin embargo, el análisis de su eficiencia está compuesto por una terminología inconstante, la falta de estrategias estandarizadas para evaluar cómo las AMP contribuyen a la conservación de tiburones y rayas, y una ambigüedad sobre cómo integrar la información sobre movimientos en los procesos de evaluación. Diseñamos un marco conceptual para estandarizar los términos más importantes (p. ej.: protección, contribución, impacto potencial, amenaza, riesgo) y usamos el concepto de riesgo de portafolio para identificar los atributos clave de los tiburones y las rayas (activos), las amenazas que enfrentan (riesgo de portafolio) y el papel específico que juegan las AMP en la mitigación del riesgo (seguro). La información sobre los movimientos puede integrarse al proceso al guiar la exposición y mitigación del riesgo con las AMP. El marco conceptual es operado con el planteamiento de ocho preguntas clave que invitan a los practicantes a considerar el enfoque de la evaluación, el tipo de AMP y su propósito, gama de amenazas existentes y potenciales, la biología y ecología de las especies, y los contextos operativos y de manejo. Finalmente, las contribuciones que tienen las AMP a la conservación de los tiburones y las rayas difieren de acuerdo con un conjunto complejo de factores naturales y humanos e interacciones que deberían considerarse cuidadosamente en el diseño, implementación y evaluación de la AMP.


Assuntos
Conservação dos Recursos Naturais , Tubarões , Animais , Ecologia , Ecossistema , Pesqueiros
5.
Conserv Biol ; 36(2): e13807, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34312893

RESUMO

Marine fisheries in coastal ecosystems in many areas of the world have historically removed large-bodied individuals, potentially impairing ecosystem functioning and the long-term sustainability of fish populations. Reporting on size-based indicators that link to food-web structure can contribute to ecosystem-based management, but the application of these indicators over large (cross-ecosystem) geographical scales has been limited to either fisheries-dependent catch data or diver-based methods restricted to shallow waters (<20 m) that can misrepresent the abundance of large-bodied fished species. We obtained data on the body-size structure of 82 recreationally or commercially targeted marine demersal teleosts from 2904 deployments of baited remote underwater stereo-video (stereo-BRUV). Sampling was at up to 50 m depth and covered approximately 10,000 km of the continental shelf of Australia. Seascape relief, water depth, and human gravity (i.e., a proxy of human impacts) were the strongest predictors of the probability of occurrence of large fishes and the abundance of fishes above the minimum legal size of capture. No-take marine reserves had a positive effect on the abundance of fishes above legal size, although the effect varied across species groups. In contrast, sublegal fishes were best predicted by gradients in sea surface temperature (mean and variance). In areas of low human impact, large fishes were about three times more likely to be encountered and fishes of legal size were approximately five times more abundant. For conspicuous species groups with contrasting habitat, environmental, and biogeographic affinities, abundance of legal-size fishes typically declined as human impact increased. Our large-scale quantitative analyses highlight the combined importance of seascape complexity, regions with low human footprint, and no-take marine reserves in protecting large-bodied fishes across a broad range of species and ecosystem configurations.


Las pesquerías marinas de los ecosistemas costeros en muchas áreas del mundo históricamente han removido a individuos de gran tamaño, potencialmente perjudicando el funcionamiento ambiental y la sostenibilidad a largo plazo de las poblaciones de peces. Los reportes sobre los indicadores basados en el tamaño que se vinculan con la estructura de la red alimenticia pueden contribuir al manejo basado en el ecosistema, aunque la aplicación de estos indicadores a grandes (inter-ecosistemas) escalas geográficas ha estado limitada a datos de captura dependientes de las pesquerías o métodos basados en el buceo restringidos a aguas someras (<20 m), lo cual puede representar erróneamente la abundancia de peces de gran tamaño capturados para la pesca. Obtuvimos los datos de la estructura del tamaño corporal de 82 teleósteos marinos demersales focalizados por razones recreativas o comerciales tomados de 2,904 despliegues de video estéreo subacuático remoto con cebo (stereo-BRUV, en inglés). El muestreo se realizó hasta los 50 metros de profundidad y abarcó aproximadamente 10,000 km del talud continental de Australia. El relieve marino, la profundidad del agua y la gravedad humana (es decir, un indicador de los impactos humanos) fueron los pronosticadores más sólidos de la probabilidad de incidencia de los peces de gran tamaño y de la abundancia de peces por encima del tamaño legal mínimo de captura. Las reservas marinas de protección total tienen un efecto positivo sobre la abundancia de los peces que están por encima del tamaño legal, aunque el efecto varió según el grupo de especies. Como contraste, los peces de tamaño sublegal fueron pronosticados de mejor manera usando gradientes de la temperatura de la superficie marina (media y varianza). En las áreas con un impacto humano reducido, los peces de gran tamaño corporal tenían hasta tres veces mayor probabilidad de aparecer y los peces de tamaño legal eran aproximadamente cinco veces más abundantes. Para los grupos de especies conspicuas con afinidades contrastantes de hábitat, ambiente y biogeografía, la abundancia de peces de tamaño legal normalmente declinó conforme aumentó el impacto humano. Nuestros análisis cuantitativos a gran escala resaltan la importancia conjunta que tienen la complejidad marina, las regiones con una huella humana reducida y las reservas marinas de protección total para la protección de los peces de gran tamaño corporal en una extensa gama de especies y configuraciones ecosistémicas. Efectos de la Huella Humana y los Factores Biofísicos sobre la Estructura del Tamaño Corporal de Especies Marinas Capturadas para la Pesca.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Austrália , Tamanho Corporal , Pesqueiros , Peixes , Humanos
6.
Trends Ecol Evol ; 37(1): 79-94, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563403

RESUMO

Acoustic telemetry (AT) is a rapidly evolving technique used to track the movements of aquatic animals. As the capacity of AT research expands it is important to optimize its relevance to management while still pursuing key ecological questions. A global review of AT literature revealed region-specific research priorities underscoring the breadth of how AT is applied, but collectively demonstrated a lack of management-driven objectives, particularly relating to fisheries, climate change, and protection of species. In addition to the need for more research with direct pertinence to management, AT research should prioritize ongoing efforts to create collaborative opportunities, establish long-term and ecosystem-based monitoring, and utilize technological advancements to bolster aquatic policy and ecological understanding worldwide.


Assuntos
Ecossistema , Pesqueiros , Acústica , Animais , Conservação dos Recursos Naturais/métodos , Telemetria/métodos
7.
Biol Conserv ; 256: 108995, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34580542

RESUMO

COVID-19 restrictions have led to an unprecedented global hiatus in anthropogenic activities, providing a unique opportunity to assess human impact on biological systems. Here, we describe how a national network of acoustic tracking receivers can be leveraged to assess the effects of human activity on animal movement and space use during such global disruptions. We outline variation in restrictions on human activity across Australian states and describe four mechanisms affecting human interactions with the marine environment: 1) reduction in economy and trade changing shipping traffic; 2) changes in export markets affecting commercial fisheries; 3) alterations in recreational activities; and 4) decline in tourism. We develop a roadmap for the analysis of acoustic tracking data across various scales using Australia's national Integrated Marine Observing System (IMOS) Animal Tracking Facility as a case study. We illustrate the benefit of sustained observing systems and monitoring programs by assessing how a 51-day break in white shark (Carcharodon carcharias) cage-diving tourism due to COVID-19 restrictions affected the behaviour and space use of two resident species. This cessation of tourism activities represents the longest break since cage-diving vessels started day trips in this area in 2007. Long-term monitoring of the local environment reveals that the activity space of yellowtail kingfish (Seriola lalandi) was reduced when cage-diving boats were absent compared to periods following standard tourism operations. However, white shark residency and movements were not affected. Our roadmap is globally applicable and will assist researchers in designing studies to assess how anthropogenic activities can impact animal movement and distributions during regional, short-term through to major, unexpected disruptions like the COVID-19 pandemic.

8.
Glob Chang Biol ; 27(15): 3432-3447, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34015863

RESUMO

Marine reserves are a key tool for the conservation of marine biodiversity, yet only ~2.5% of the world's oceans are protected. The integration of marine reserves into connected networks representing all habitats has been encouraged by international agreements, yet the benefits of this design has not been tested empirically. Australia has one of the largest systems of marine reserves, providing a rare opportunity to assess how connectivity influences conservation success. An Australia-wide dataset was collected using baited remote underwater video systems deployed across a depth range from 0 to 100 m to assess the effectiveness of marine reserves for protecting teleosts subject to commercial and recreational fishing. A meta-analytical comparison of 73 fished species within 91 marine reserves found that, on average, marine reserves had 28% greater abundance and 53% greater biomass of fished species compared to adjacent areas open to fishing. However, benefits of protection were not observed across all reserves (heterogeneity), so full subsets generalized additive modelling was used to consider factors that influence marine reserve effectiveness, including distance-based and ecological metrics of connectivity among reserves. Our results suggest that increased connectivity and depth improve the aforementioned marine reserve benefits and that these factors should be considered to optimize such benefits over time. We provide important guidance on factors to consider when implementing marine reserves for the purpose of increasing the abundance and size of fished species, given the expected increase in coverage globally. We show that marine reserves that are highly protected (no-take) and designed to optimize connectivity, size and depth range can provide an effective conservation strategy for fished species in temperate and tropical waters within an overarching marine biodiversity conservation framework.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Austrália , Ecossistema , Pesqueiros , Peixes , Oceanos e Mares
10.
J Environ Manage ; 289: 112375, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33813301

RESUMO

The much-publicized threats to coral reef systems necessitate a considered management response based on comprehensive ecological data. However, data from large reef systems commonly originate from multiple monitoring programs that use different methods, each with distinct biases that limit united assessments of ecological status. The effective integration of data from different monitoring methods would allow better assessment of system status and hence, more informed management. Here we examine the scope for comparability and complementarity of fish data from two different methods used on Australia's Great Barrier Reef (GBR): underwater visual census (UVC) and baited remote underwater video stations (BRUVS). We compared commonly reported reef fish measures from UVC and BRUVS on similar reef slope habitats of three central GBR reefs. Both methods recorded similar estimates of total species richness, although ~30% of recorded species were not common to both methods. There were marked differences between methods in sub-group species richness, frequency of species occurrences, relative abundances of taxa and assemblage structure. The magnitude and orientation of inter-method differences were often inconsistent among taxa. However, each method better categorized certain components of fish communities: BRUVS sampled more predatory species in higher numbers while UVC was similarly better at sampling damselfishes (Pomacentridae). Our results suggest limited scope for direct or adjusted comparisons of data from UVC and BRUVS. Conversely, complementary aspects of the two methods confirm that their integration in monitoring programs will provide a more complete and extensive assessment of reef fish status for managers than from either method alone.


Assuntos
Biodiversidade , Censos , Animais , Recifes de Corais , Ecossistema , Peixes
11.
iScience ; 24(3): 102097, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33681724

RESUMO

Proximity and size of the nearest market ('market gravity') have been shown to have strong negative effects on coral reef fish communities that can be mitigated by the establishment of closed areas. However, moray eels are functionally unique predators that are generally not subject to targeted fishing and should therefore not directly be affected by these factors. We used baited remote underwater video systems to investigate associations between morays and anthropogenic, habitat, and ecological factors in the Caribbean region. Market gravity had a positive effect on morays, while the opposite pattern was observed in a predator group subject to exploitation (sharks). Environmental DNA analyses corroborated the positive effect of market gravity on morays. We hypothesize that the observed pattern could be the indirect result of the depletion of moray competitors and predators near humans.

12.
J Fish Biol ; 98(3): 592-621, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33174197

RESUMO

Angel sharks (Squatina spp.) are distributed in warm temperate to tropical waters around the world. Many species occur in shelf seas and exhibit seasonal inshore-offshore migrations, moving inshore to give birth. Consequently, there can be high spatial overlap of angel shark populations with fisheries and other human activities. Their dorso-ventrally flattened body shape, large size (most species attain >100 cm total length, LT ) and demersal nature means that they may be taken in a variety of demersal fishing gears from birth. Available data indicate that angel sharks typically have a biennial reproductive cycle, with litter sizes generally <20 and the young born at c. 20-30 cm. The biological characteristics of angel sharks render them susceptible to overexploitation, as exemplified by the decline of Squatina squatina from many parts of its former range in the north-east Atlantic and Mediterranean Sea. Currently, half of the 22 recognized extant species of angel shark are classed as Threatened on the International Union for Conservation of Nature (IUCN) Red List (with a further three classified as Data Deficient). Given the biological vulnerability of angel sharks, and that many species are data-limited, the current paper provides a review of available biological information and fisheries data pertaining to this family.


Assuntos
Conservação dos Recursos Naturais , Tubarões/fisiologia , Distribuição Animal , Animais , Conservação dos Recursos Naturais/tendências , Pesqueiros , Atividades Humanas , Mar Mediterrâneo , Reprodução/fisiologia
13.
PLoS One ; 15(12): e0244154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33332427

RESUMO

Baited remote underwater video stations (BRUVS) are increasingly being used to evaluate and monitor reef communities. Many BRUVS studies compare multiple sites sampled at single time points that may differ from the sampling time of another site. As BRUVS use grows in its application to provide data relevant to sustainable management, marine protected area success, and overall reef health, understanding repeatability of sampling results is vital. We examined the repeatability of BRUVS results for the elasmobranch community both within and between seasons and years, and explored environmental factors affecting abundances at two sites in Indonesia. On 956 BRUVS, 1139 elasmobranchs (69% rays, 31% sharks) were observed. We found consistent results in species composition and abundances within a season and across years. However, elasmobranch abundances were significantly higher in the wet season. The elasmobranch community was significantly different between the two sites sampled, one site being more coastal and easily accessed by fishermen. Our results demonstrate that while BRUVS are a reliable and repeatable method for surveying elasmobranchs, care must be taken in the timing of sampling between different regions to ensure that any differences observed are due to inherent differences amongst sampling areas as opposed to seasonal dissimilarities.


Assuntos
Recifes de Corais , Elasmobrânquios/fisiologia , Estações do Ano , Gravação em Vídeo/normas , Animais , Reprodutibilidade dos Testes , Gravação em Vídeo/métodos
15.
Nature ; 583(7818): 801-806, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699418

RESUMO

Decades of overexploitation have devastated shark populations, leaving considerable doubt as to their ecological status1,2. Yet much of what is known about sharks has been inferred from catch records in industrial fisheries, whereas far less information is available about sharks that live in coastal habitats3. Here we address this knowledge gap using data from more than 15,000 standardized baited remote underwater video stations that were deployed on 371 reefs in 58 nations to estimate the conservation status of reef sharks globally. Our results reveal the profound impact that fishing has had on reef shark populations: we observed no sharks on almost 20% of the surveyed reefs. Reef sharks were almost completely absent from reefs in several nations, and shark depletion was strongly related to socio-economic conditions such as the size and proximity of the nearest market, poor governance and the density of the human population. However, opportunities for the conservation of reef sharks remain: shark sanctuaries, closed areas, catch limits and an absence of gillnets and longlines were associated with a substantially higher relative abundance of reef sharks. These results reveal several policy pathways for the restoration and management of reef shark populations, from direct top-down management of fishing to indirect improvement of governance conditions. Reef shark populations will only have a high chance of recovery by engaging key socio-economic aspects of tropical fisheries.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Recifes de Corais , Ecossistema , Pesqueiros/economia , Pesqueiros/estatística & dados numéricos , Tubarões/fisiologia , Animais , Mapeamento Geográfico , Densidade Demográfica , Fatores Socioeconômicos
16.
PLoS One ; 15(5): e0231688, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32384087

RESUMO

Effective sampling of marine communities is essential to provide robust estimates of species richness and abundance. Baited Remote Underwater Video Stations (BRUVS) are a useful tool in assessment of fish assemblages, but research on the optimal sampling period required to record common and rare elasmobranch species is limited. An appropriate 'soak time' (time elapsed between settlement of the BRUVS on the seabed and when it is hauled off the seabed) requires consideration, since longer soak times may be required to record species rare in occurrence, or sightings in areas of generally low elasmobranch abundance. We analysed 5352 BRUVS deployments with a range of soak times across 21 countries in the Coral Triangle and Pacific Ocean, to determine the optimal soak time required for sampling reef-associated elasmobranchs, considering species rarity, and community abundance at each site. Species were categorised into 4 'rarity' groups (very rare to common), by their relative occurrence in the dataset, defined simply by the proportion of BRUVS on which they occurred. Individual BRUVS were categorised into 3 'abundance' groups (low to high) by overall relative elasmobranch abundance, defined as total number of all elasmobranchs sighted per unit of sampling effort. The effects of BRUVS soak times, and levels of rarity and abundance groupings, on the time to first sighting (TFS) and time to maximum number of elasmobranchs observed (tMaxN) were examined. We found that TFS occurred earlier for species groups with high occurrence, and on BRUVS with high elasmobranch abundance, yet longer soak times were not essential to observe rarer species. Our models indicated an optimum of 95% of both sighting event types (TFS, tMaxN) was recorded within 63-77 minutes, and a soak time of 60 minutes recorded 78-94% of the elasmobranch sighting events recorded (78-94% of TFS events and 82-90% of tMaxN events), when species rarity and abundance on BRUVS was accounted for. Our study shows that deployments of ~ 77 minutes are optimal for recording all species we observed, although 60 minutes soak time effectively samples the majority of elasmobranch species in shallow coral reef habitats using BRUVS.


Assuntos
Biodiversidade , Recifes de Corais , Elasmobrânquios , Gravação em Vídeo/métodos , Animais , Conservação dos Recursos Naturais , Elasmobrânquios/classificação , Oceano Pacífico
17.
PLoS One ; 15(4): e0231142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32271802

RESUMO

Information on the spatial ecology of reef sharks is critical to understanding life-history patterns, yet gaps remain in our knowledge of how these species move and occupy space. Previous studies have focused on offshore reefs and atolls with little information available on the movement and space use of sharks utilising reef habitats closer to shore. Cross-shelf differences in physical and biological properties of reefs can alter regional ecosystem processes resulting in different movement patterns for resident sharks. Passive acoustic telemetry was used to examine residency, space use and depth use of 40 blacktip reef sharks, Carcharhinus melanopterus, on an inshore reef in Queensland, Australia, and assess temporal or biological influences. All sharks showed strong site-attachment to inshore reefs with residency highest among adult females. Sharks exhibited a sex-based, seasonal pattern in space use where males moved more, occupied more space and explored new areas during the reproductive season, while females utilised the same amount of space throughout the year, but shifted the location of the space used. A positive relationship was also observed between space use and size. There was evidence of seasonal site fidelity and long-distance movement with the coordinated, annual migration of two adult males to the study site during the mating season. Depth use was segregated with some small sharks occupying shallower depths than adults throughout the day and year, most likely as refuge from predation. Results highlight the importance of inshore reef habitats to blacktip reef sharks and provide evidence of connectivity with offshore reefs, at least for adult males.


Assuntos
Recifes de Corais , Movimento/fisiologia , Caracteres Sexuais , Tubarões/fisiologia , Acústica , Animais , Feminino , Geografia , Ilhas , Masculino , Modelos Biológicos , Queensland , Fatores de Tempo
18.
Curr Biol ; 30(3): 480-489.e5, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31983638

RESUMO

No-take marine protected areas (MPAs) are a commonly applied tool to reduce human fishing impacts on marine and coastal ecosystems. However, conservation outcomes of MPAs for mobile and long-lived predators such as sharks are highly variable. Here, we use empirical animal tracking data from 459 individual sharks and baited remote underwater video surveys undertaken in 36 countries to construct an empirically supported individual-based model that estimates the conservation effectiveness of MPAs for five species of coral reef-associated sharks (Triaenodon obesus, Carcharhinus melanopterus, Carcharhinus amblyrhynchos, Carcharhinus perezi, and Ginglymostoma cirratum). We demonstrate how species-specific individual movement traits can contribute to fishing mortality of sharks found within MPAs as they move outside to adjacent fishing grounds. We discovered that the world's officially recorded coral reef-based managed areas (with a median width of 9.4 km) would need to be enforced as strict no-take MPAs and up to 5 times larger to expect protection of the majority of individuals of the five investigated reef shark species. The magnitude of this effect depended on local abundances and fishing pressure, with MPAs required to be 1.6-2.6 times larger to protect the same number of Atlantic and Caribbean species, which occur at lower abundances than similar species in the western Pacific. Furthermore, our model was used to quantify partially substantial reductions (>50%) in fishing mortality resulting from small increases in MPA size, allowing us to bridge a critical gap between traditional conservation planning and fisheries management. Overall, our results highlight the challenge of relying on abundance data alone to ensure that estimates of shark conservation impacts of MPAs follow the precautionary approach.


Assuntos
Conservação dos Recursos Naturais , Tubarões , Animais , Recifes de Corais , Pesqueiros , Especificidade da Espécie
19.
Trends Ecol Evol ; 34(5): 459-473, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30879872

RESUMO

There have been efforts around the globe to track individuals of many marine species and assess their movements and distribution, with the putative goal of supporting their conservation and management. Determining whether, and how, tracking data have been successfully applied to address real-world conservation issues is, however, difficult. Here, we compile a broad range of case studies from diverse marine taxa to show how tracking data have helped inform conservation policy and management, including reductions in fisheries bycatch and vessel strikes, and the design and administration of marine protected areas and important habitats. Using these examples, we highlight pathways through which the past and future investment in collecting animal tracking data might be better used to achieve tangible conservation benefits.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Animais , Ecossistema
20.
Ecol Evol ; 9(1): 417-426, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30680124

RESUMO

The extent to which no-take marine reserves can benefit anadromous species requires examination. Here, we used acoustic telemetry to investigate the spatial behavior of anadromous brown trout (sea trout, Salmo trutta) in relation to a small marine reserve (~1.5 km2) located inside a fjord on the Norwegian Skagerrak coast. On average, sea trout spent 42.3 % (±5.0% SE) of their time in the fjord within the reserve, a proportion similar to the area of the reserve relative to that of the fjord. On average, sea trout tagged inside the reserve received the most protection, although the level of protection decreased marginally with increasing home range size. Furthermore, individuals tagged outside the reserve received more protection with increasing home range size, potentially opposing selection toward smaller home range sizes inflicted on fish residing within reserves, or through selective fishing methods like angling. Monthly sea trout home ranges in the marine environment were on average smaller than the reserve, with a mean of 0.430 (±0.0265 SE) km2. Hence, the reserve is large enough to protect the full home range of some individuals residing in the reserve. Synthesis and applications: In general, the reserve protects sea trout to a varying degree depending on their individual behavior. These findings highlight evolutionary implications of spatial protection and can guide managers in the design of marine reserves and networks that preserve variation in target species' home range size and movement behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...